The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.

نویسندگان

  • S Leimkühler
  • W Klipp
چکیده

The requirement of MobA for molybdoenzymes with different molybdenum cofactors was analyzed in Rhodobacter capsulatus. MobA is essential for DMSO reductase and nitrate reductase activity, both enzymes containing the molybdopterin guanine dinucleotide cofactor (MGD), but not for active xanthine dehydrogenase, harboring the molybdopterin cofactor. In contrast to the mob locus of Escherichia coli and R. sphaeroides, the mobB gene is not located downstream of mobA in R. capsulatus. The mobA gene is expressed constitutively at low levels and no increase in mobA expression could be observed even under conditions of high MGD demand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.

During the screening for Rhodobacter capsulatus mutants defective in xanthine degradation, one Tn5 mutant which was able to grow with xanthine as a sole nitrogen source only in the presence of high molybdate concentrations (1 mM), a phenotype resembling Escherichia coli mogA mutants, was identified. Unexpectedly, the corresponding Tn5 insertion was located within the moeA gene. Partial DNA sequ...

متن کامل

Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA.

Molybdopterin guanine dinucleotide (MGD) is the form of the molybdenum cofactor that is required for the activity of most bacterial molybdoenzymes. MGD is synthesized from molybdopterin (MPT) and GTP in a reaction catalyzed by the MobA protein. Here we report that wild type MobA can be copurified along with bound MPT and MGD, demonstrating a tight binding of both its substrate and product. To s...

متن کامل

Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution.

BACKGROUND All mononuclear molybdoenzymes bind molybdenum in a complex with an organic cofactor termed molybdopterin (MPT). In many bacteria, including Escherichia coli, molybdopterin can be further modified by attachment of a GMP group to the terminal phosphate of molybdopterin to form molybdopterin guanine dinucleotide (MGD). This modification reaction is required for the functioning of many ...

متن کامل

Molybdenum Cofactor Biology and Disorders Related to Its Deficiency; A Review Study

Background: Molybden, as a vital and essential micronutrient is directly involved in the metabolism of other elements including carbon, sulfur, and nitrogen. Molybdenum alone is not biologically active unless it binds to specific cofactors. Except for the bacterial nitrogenase, which contains molybdenum-Iron complex, molybdenum cofactor (Moco) is considered as the bioactive component placed in ...

متن کامل

The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis.

The molybdenum cofactor (Moco) is found in a variety of enzymes present in all phyla and comprises a family of related molecules containing molybdopterin (MPT), a tricyclic pyranopterin with a cis-dithiolene group, as the invariant essential moiety. MPT biosynthesis involves a conserved pathway, but some organisms perform additional reactions that modify MPT. In eubacteria, the cofactor is ofte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 174 2  شماره 

صفحات  -

تاریخ انتشار 1999